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INTRODUCTION

« Trip distribution is a process by which the trips generated in one zone are
allocated to other zones in the study area.

« These trips may be within the study area (internal - internal) or between the
study area and areas outside the study area (internal - external).

» For example, if the trip generation analysis results in an estimate of 200 HBW
trips in zone 10, then the trip distribution analysis would determine how many of
these trips would be made between zone 10 and all the other internal zones.

* In addition, the trip distribution process considers internal-external trips (or vice
versa) where one end of the trip is within the study area and the other end is
outside the study area.




For example:

external stations for a
study area boundary are
depicted. If, for example,
a trip begins somewhere
south of the study area
and ends in the center of
the study area using
Route 29, then an
external — internal trip is
defined that begins at
external station 103 and
ends in a zone located in
the center of the study
area.
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This is essentially a two-dimensional array of
cells where rows and columns represent each
of the z zones in the study area (including
external zones)

The cells of each row i contain the trips
originating in that zone which have as
destinations the zones in the corresponding
columns.

The main diagonal corresponds to intra-zonal
trips.

Therefore: T; is the number of trips between
origin i and destination j;

The total array is T; or T; O, is the total number
of trips originating in zone /, and D; is the total
number of trips attracted to zone j.
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* P;is the number of trips produced or
generated in a zone i and Q; those attracted to
zone j.

+ We shall use lower case letters, £, 0,and d; to
indicate observations from a sample or from

an earlier study;

» Capital letters will represent our target, or the
values we are trying to model for the
corresponding modelling period.

« The matrices can be further disaggregated, for example, by person type (n) and/or by

mode (k) :

- Ty kn are trips from i to j by mode k and person type n;

- O;*is the total number of trips originating at zone i by mode k and person type n,

and so on.

* p;*is the proportion of trips from i to j by mode k;

* ¢;¥is the cost of travelling between i and j by mode k.

» The cost element may be considered in terms of distance, time or money units.

« It is often convenient to use a measure combining all the main attributes related to
the disutility of a journey and this is normally referred to as the generalised cost of

travel.

» This is typically a linear function of the attributes of the journey weighted by
coefficients which attempt to represent their relative importance as perceived by the

traveller.

Cy = art] + axt; + ast; + ast; + asF; + asp; + 8




METHOD

» Growth factor (uniform, single constrained, double constrained)

* Synthetic or gravity model

Growth-Factor Methods

1. Uniform Growth Factor

If the only information available is about a general growth rate 7 for the whole of the
study area, then we can only assume that it will apply to each cell in the matrix:

T,.j =7- t,.j .... for each pairiandj

Of course 1 = T/, i.e. the ratio of expanded over previous total number of trips.




Example

Consider the simple four-by-four base-year trip matrix of Table 5.2. If the growth in traffic
in the study area is expected to be of 20% in the next three years, it is a simple matter to
multiply all cell values by 1.2 to obtain a new matrix as in Table 5.3.

Table 5.2 Base-year trip matrix Table 5.3 Future estimated trip matrix with v = 1.2

1 2 3 B ¥, 1 2 3 B 2

T £

1 5 50 100 200 355 1 6 60 120 240 426

2 50 5 100 300 455 2 60 6 120 360 546
3 50 100 - 100 255 3 60 120 6 120 306
1 100 200 250 20 570 B 120 240 300 24 684
2 205 355 455 620 1635 Y 246 426 546 744 1962

1 I

2. Singly Constrained Growth-Factor Methods

» Consider the situation where information is available on the expected growth in
trips originating in each zone, for example shopping trips.

* In this case it would be possible to apply this origin-specific growth factor (r;) to
the corresponding rows in the trip matrix.

+ The same approach can be followed if the information is available for trips
attracted to each zone; in this case the destination-specific growth factors ()
would be applied to the corresponding columns.

* This can be written as:

Tj=T1 "1 for origin-specific factors
T.=r1 -t ... for destination-specific factors

it




Table 5.4 Ongin-constrained growth tnip table

1 2 3 4 ¥ Target O;
i
1 5 50 100 200 355 400
2 50 5 100 300 455 460
3 50 100 5 100 255 400
4 100 200 250 20 570 702
X 205 355 455 620 1635 1962

This problem can be solved immediately by multiplying each row by the ratio of target Oi over the base

year total (Zj), thus giving the results in Table 5.5.

Table 5.5 Expanded origin-constrained growth trip table

1 2 3 4 X Target O;
J
1 5.6 56.3 112.7 225.4 400 400
2 50.5 5.1 101.1 303.3 460 460
3 784 156.9 7.8 156.9 400 400
-+ 123.2 246.3 307.9 24.6 702 702
¥ 257.7 464.6 529.5 701.2 1962 1962

. Doubly Constrained Growth Factors

* An interesting problem is generated when information is available on the future
number of trips originating and terminating in each zone.

* In transport these methods are known by their authors as Fratar in the US and
Furness elsewhere.

+ For example Furness (1965 ) introduced ‘balancing factors’ A; and B; as

follows:
Tij=ti"Ti'rj'Ai'Bj

* orincorporating the growth rates into new variables ai and bj:
T,--=t~~'a,-'bj

]

with a;=1;A; , and bj = I; B,




+ This is achieved in an iterative process which in outline is as follows:

1. Set all bj = 1.0 and solve for a;; in this context, ‘solve for a; means find the
correction factors a; that satisfy the trip generation constraints;

2. With the latest a; solve for b, e.g. satisfy the trip attraction constraints;

3. Keeping the b;’s fixed, solve for a; and repeat steps (2) and (3) until the
changes are sufficiently small.

» This method can be said as bi-proportional algorithm’ because of the nature of
the corrections involved

» The most important condition required for the convergence of this method is that
the growth rates produce target values T; and T, such that

Table 5.6 Doubly constrained matrix expansion problem

1 ) 3 4 > | Targeto The solution to this problem, after
] three iterations on rows and
bl .

: SN il 355 00 columns (three sets of corrections
2 50 5 100 300 455 460
3 50 100 s 100 | 255 400 for all rows and three for all
4 100 200 250 20 | 570 702 columns), is shown in Table 5.7
B 205 355 455 620 1635
'liuget D 260 400 500 802 1962

Table 5.7 Solution to the doubly constrained matrix expansion problem

1 2 3 4 3 | Targeto; Note that this estimated matrix
- is within 1% of meeting the
1 525 4412 9824 25425 | 40185 [ 400 target trio ends. more than
2 4530 381 8478 320.11 | 46299 | 460 g P ' _
3 7704 12050 721 186.58 | 40034 [ 400 enough accuracy for this
1 13241 22257 309.77 3207 | 69682 | 702 problem.

260.00 400.00 500.00 802.00 1962

Target D; 260 400 500 802 1962




» A small study area has been divided into four zones and a limited survey has
resulted in the following trip matrix:

+ Estimates for future total trip ends for each zone are as given below:

Estimated future Estimated future
Zones origins destinations

1 1200 670
2 1050 730
3 380 950
4 770 995

» Use an appropriate growth-factor method to estimate future inter-zonal movements.
* Hint. check conditions for convergence of the chosen method first.

Advantages and Limitations of Growth-Factor Methods

» simple to understand and make direct use of observed trip matrices and forecasts
of trip-end growth.

» This advantage is also their limitation as they are probably only reasonable for

short-term planning horizons or when changes in transport costs are not to be
expected

* Any error in the base-year may well be amplified by the application of successive
correction factors. Moreover, if parts of the base-year matrix are unobserved,
they will remain so in the forecasts. Therefore, these methods cannot be used to
fill in unobserved cells of partially observed trip matrices.

« limitation is that the methods do not take into account changes in transport costs
due to improvements (or new congestion) in the network. Therefore they are of
limited use in the analysis of policy options involving new modes, new links,
pricing policies and new zones.




Synthetic or Gravity Models

1. The Gravity Distribution Model

* They start from assumptions about group trip making behavior and the way this is
influenced by external factors such as total trip ends and distance travelled.

» These models estimate trips for each cell in the matrix without directly using the
observed trip pattern; therefore they are sometimes called synthetic as opposed
to growth factor

a P P,
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where P; and P; are the populations of the towns of origin and destination, dj is
the distance between j and j, and a is a proportionality factor (with units
trips-distance?/population?)

» Zone A connects to 4 other zones (B, C, D, E) with the number of origin in zone A is
25.000 trips

* Number of population in each zones and travel time between Zone A to Zone B, C,
D, E is as follows:

Zone Population (in thousand) Travel time (in hour)
B 40 6
C 75 4
D 120 3
E 150 7

* Calculate the number of trip distribution from Zone Ato Zone B, C, D, and E




» The model was further generalised by assuming that the effect of distance or ‘separation’
could be modelled better by a decreasing function, to be specified, of the distance or travel
cost between the zones.

T; =aO0;D; f(cy)

* where f(c;) is a generalised function of the travel costs with one or more parameters for
calibration.

* This function often receives the name of ‘deterrence function’ because it represents the
disincentive to travel as distance (time) or cost increases. Popular versions for this
function are:

‘/[(C;;;_\] =
fcy) = ¢,

Y

exp(—fcy)

—n

exponential function

power function

fley) = {‘;. exp(—pc;) combined function

Table 5.8 A cost matrix and trip-end totals for a gravity model estimation

Cost matrix (minutes)

given the information that the best value of S is
0.10. The first step would be to build a matrix of

1 £ o 4 Target O | the values exp (-8 cij),
1 3 11 18 22 400
- 12 3 12 19 460 Table 5.9 The matrix exp (—# c; ) and sums to prepare for a gravity model run
3 15.5 13 5 7 400 A s
4 24 18 s 5 702 5 =R ey . .
Target D, 260 400 500 802 1062 1 2 3 4 z
1 0.74 0.33 0.17 0.11 135
2 0.30 0.74 0.30 0.15 149
3 0.21 027 0.61 0.50 1.59
4 0.09 0.17 045 0.61 1.31
b 1.34 1.51 1.52 1.36 574
Base 1 2 3 4 i Target Ratio
7
1 253.12 113.73 56.48 37.86 461.19 400 0.87
2 102.91 253.12 102.91 51.10 510.04 460 0.90
3 72.52 93.12 207.23 169.67 542.54 400 0.74
4 31.00 56.48 153.52 207.23 448.23 702 1.57
% 459.54 516.45 520.15 465.87 1962.00
Target 260 400 500 802
Ratio 0.57 0.77 0.96 1.72




Ranges (min)

Cost 1.0-4.0 4.1-8.0 8.1-12.0 12.1-16.0 16.1-20.0 20.1-24 Sum
Trips 3559 965.7 263.3 729 209.2 95.0 1962

a P P

=
f;’u

Compared what if without value of B and using 7; =

» Consider a study area consisting of three zones.

» The data have been determined as follows: the number of productions and attractions
has been computed for each zone by methods described in the section on trip
generation, and the average travel times between each zone have been determined.

Table 12.9 Trip Productions and Attractions for a Three-Zone Study Area

Zone 1 2 3 Total
Trip productions 140 330 280 750
Trip attractions 300 270 180 750

Table 12.10 Travel Time between Zones (min)
Zone 1
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Assume K,-j is the same unit value for all zones. Finally, the F values have been
calibrated as previously described and are shown in Table 12.11 for each travel
time increment.

Note that the intra-zonal travel time for zone 1 is larger than those of most other
inter-zone times because of the geographical characteristics of the zone and
lack of access within the area.

This zone could represent conditions in a congested downtown area.

Determine the number of zone-to-zone trips through two iterations.

Table 12.11 Travel Time versus Friction Factor
Time (min)
1

F Factor

CRRBEBRB (™

00 ~1 Oh LA W B

Note:  F values were oblained from the calibration process.

Calibration of F Factors

Table 12.10 and selecting the correct F value from Table 12.11. For example, travel
time is 2 min between zones 1 and 2. The corresponding F value is 52.)

Usc Eq. 123.
AFK
Ty = P| ——— K = 1 for all zones
EAIFHK!J
300 x 39
T,_, = 140 X = 47
il (300 X 39) + (270 X 52) + (180 X 50)
270 X 52
= b4 =
o i (300 X 39) + (270 X 52) + (180 X 50) i
180 X 50
= b4 =
Ti-s = 10 X 00 % 39) + (270 x 52) + (180 X 50)
Py =140

Make similar calculations for zones 2 and 3.

TZ—I = 188 Tz_z =85 Tz-; = 57 Pz = 330

T3_1 = 144 Tg_z = 68 T3_3 = 68 Pg = 280
The results summarized in Table 12.12 represent a singly constrained gravity model.
This constraint is that the sum of the productions in each zone is equal to the number




Table 12.12 Zone-to-Zone Trips: First Iteration, Singly Constrained

Zone 1 2 3 Computed P Given P
1 47 57 36 140 140
2 188 85 57 330 330
3 144 _68 _68 280 280
Computed A 379 210 161 750 750
Given A 300 270 180 750

of productions given in the problem statement. However, the number of attractions
estimated in the trip distribution phase differs from the number of attractions given.
For zone 1, the correct number is 300, whereas the computed value is 379. Values for
zone 2 are 270 versus 210, and for zone 3, they are 180 versus 161.

2. Singly and Doubly Constrained Models

* The need to ensure that the restrictions are met requires replacing the single
proportionality factor a by two sets of balancing factors A; and B, as in the Furness
model, yielding:

* In a similar vein one can again subsume O; and D, into these factors and rewrite the
model as:

T; = a; b, f(c;)




To create a doubly constrained gravity model where the computed attractions

equal the given attractions, calculate the adjusted attraction factors according to the
formula

A
Cre-1)

where

Ay = adjusted attraction factor for attraction zone (column) j, iteration k
Ay = Ajwhenk =1
Cy = actual attraction (column) total for zone j, iteration k
A; = desired attraction total for attraction zone (column) j
j = attraction zone number,j=1,2,...,n
n = number of zones
k = iteration number, k =1,2,...,m
m = number of iterations

To produce a doubly constrained gravity model, repeat the trip distribution compu-
tations using modified attraction values so that the numbers attracted will be
increased or reduced as required. For zone 1, for example, the estimated attractions
were too great. Therefore, the new attraction factors are adjusted downward by mul-
tiplying the original attraction value by the ratio of the original to estimated attrac-
tion values.

Apply the gravity model (Eq. 12.3) for all iterations to calculate zonal trip inter-
changes using the adjusted attraction factors obtained from the preceding iteration.
In practice, the gravity model becomes

AF Ky

TH = ——
; AiFyKy

where T, is the trip interchange between i and j for iteration k, and A, = A; when
k = 1. Subscript j goes through one complete cycle every time k changes, and i goes
through one complete cycle every time j changes. This formula is enclosed in paren-
theses and subscripted to indicate that the complete process is performed for each
trip purpose.




300 Perform a second iteration using the adjusted attraction values.
Zone 1:A,; = 300 X —— =237
379 237 X 39

Ty-y = 140 X =34
Zo“unzmx‘;’:'_‘;:m i (237 X 39) + (347 X 52) + (201 X 50)
180 Ty-2 =140 X ol =68
Zone 3:Ax = 180 X 1= = 201 il (237 x 39) + (347 X 52) + (201 X 50)
201 X 50
_3=140 X .
H e (237 X 39) + (347 X 52) + (201 X 50) i
P1=140
Make similar calculations for zones 2 and 3.
Tz_1=153 Tz_z=112 T3_3=65 P2=330
T3_1=116 T3_2=ﬁ T3_3=76 P3=280

Table 12.13 Zone-to-Zone Trips: Second Iteration, Doubly Constrained

Zone 1 2 3 Computed P Given P
1 4 68 38 140 140
2 153 112 65 330 330
3 16 88 16 280 280
Computed A 303 268 179 750 750
Given A 300 270 180 750

» The results are summarized in Table 12.13. Note that, in each case, the sum of the
attractions is now much closer to the given value.

* The process will be continued until there is a reasonable agreement (within 5%)
between the A that is estimated using the gravity model and the values that are
furnished in the trip generation phase.




When should a singly constrained gravity model or the doubly constrained gravity model be used?

» The singly constrained gravity model may be preferred if the friction factors are more reliable than the
attraction values.

» The doubly constrained gravity model is appropriate if the attraction values are more reliable than friction
factors.

 To illustrate either choice, consider the following example:

Table 12.15 Zone-to-Zone Trips: Singly Constrained Gravity Model
Zone 1 2 3 Computed P Given P + Table 12.15 is more likely to be
accurate if engineering

1 235 118 47 400 400 )
2 235 118 47 400 400 judgment suggests the
3 59 29 12 100 100 occurrence of travel
mgph:;ej“ % % :1& % SO0 impedances and thus the
friction factors are more
Table 12.16 Zone-to-Zone Trips: Doubly Constrained Gravity Model accurate than trip attractions.
Zone 1 2 3 Computed P Given P + Table 12.16 is more likely to be
1 133 133 133 400 400 accurate if the attractions are
2 133 133 133 400 400 more accurate than the friction
3 33 33 33 100 100 factors_
Computed A 300 300 300 900 900
Given A 300 300 300 900




