
TRANSPORT PLANNING 
AND MODELING

TRIP GENERATION – 1ST MEETING

Trip Generation Introduction

• The trip generation stage of the classical transport model 
aims at predicting the total number of trips generated by (Oi) 
and attracted to (Dj) each zone of the study area. 

• This can be achieved in a number of ways: 

1. Starting with the trips of the individuals or households 
who reside in each zone or,

2. Directly with some of the properties of the zones: 
population, employment, number of cars, etc. 

• The subject has also been viewed as a trip frequency choice 
problem: how many shopping (or other purpose) trips will be 
carried out by this person type during a representative week? 



Trip Generation Terminology

– Journey (a.k.a. trip):  one-way movement 
from a point of origin to a point of destination 
to satisfy the need or demand for activity

– Home-based (HB) Trip:  Home is the origin 
or destination

– Non-Home-based (NHB):  Neither end of the 
trip is the home of the traveler

– Trip Production:  Home end of a HB trip or 
origin end of a NHB trip

Trip Generation Terminology 
(continued)

– Trip Attraction:  non-home end of the HB trip 
and the destination end of the NHB trip

– Trip Generation:  total number of trips 
generated by households in a zone (HB and 
NHB), where the task remains to allocate 
NHB to various zones

– Trip chaining:  multiple trips are performed in 
sequence as a matter of efficiency, performing 
several activities



Classification of Trips—Trip 
Purpose

• Homebased (HB)
– Work (HBW)

– School (HBS)

– Shopping (HBSH)

– Social and recreation (HBR)

– Other (HBO)

• Non-homebased (NHB)not classified into 
categories



Classification of Trips—Person 
Type

• Income level

• Car ownership

• Household size 

• Household structure
– group housing

– single

– family-head

– family-worker

Trip Generation Studies

• Household based

• Zonal based



Factors affecting Trip Generation—
Personal Trips (Production)

• income

• car ownership

• household structure

• family size

• value of land

• residential density

• accessibility

Factors affecting Trip Generation—
Personal Trips (Attraction)

• office space

• commercial space

• educational space

• number of employees

• type of employment (e.g., government, 
retail, industrial)



Trip Generation Modeling—
Growth Factor Modeling

Growth-factor Modelling

• Since the early 1950s several techniques have been 
proposed to model trip generation. 

• Most methods attempt to predict the number of trips produced 
(or attracted) by household or zone as a function of (generally 
linear) relations to be defined from available data. 

• It is important to be clear about the following aspects 
mentioned above:

1. what trips to be considered (e.g. only vehicle trips and 
walking trips longer than three blocks);

2. what is the minimum age to be included in the analysis 
(i.e. five years or older).



• Consider a zone with 250 households with car and 250 
households without car. 

• Assuming we know the average trip generation rates of each 
group:

1. car-owning households produce: 6.0 trips/day

2. non-car-owning households produce: 2.5 trips/day

• we can easily deduce that the current number of trips per day is:

ti = 250 × 2.5 + 250 × 6.0 = 2125 trips/day

• Let us also assume that in the future all households will have a 
car; therefore, assuming that income and population remain 
constant (a safe hypothesis in the absence of other information), 
we could estimate a simple multiplicative growth factor as:

Fi = Cdi / Cci = 1/0.5 = 2

• We could estimate the number of future trips as:

Ti = 2 × 2125 = 4250 trips/day

• However, the method is obviously very crude. If we use our 
information about average trip rates and make the assumption 
that these will remain constant (which is actually the main 
assumption behind one of the most popular forecasting 
methods, as we will see below), we could estimate the future 
number of trips as:

Ti = 500 × 6 = 3000

• which means that the growth factor method would overestimate 
the total number of trips by approximately 42%. 

• This is very serious because trip generation is the first stage of 
the modelling process errors here are carried through the 
entire process and may invalidate work on subsequent stages.



• Ti = a*X0 + b*X1

– Parameters (a = 2.5 trips/hh; b = 6 trips/hh)

– Variables (X0 = no-auto hh’s; X1 = auto hh’s)

– Base year X0 = 500 hh and X1 = 500 hh
– Ti = 4250 trips generated

– Forecast year everyone will own a car
• Ti = 8500 trips  based on growth factor 1000/500 = 2

• Ti = 6000   based on changes in explanatory variables

Trip Generation Modeling—
Cross-Classification



Cross-Classification or Category 
Analysis

Classical Model

• The method is based on estimating the response (e.g. the 
number of trip productions per household for a given purpose) 
as a function of household attributes. 

• Its basic assumption is that trip generation rates are relatively 
stable over time for certain household stratifications

• Let tp (h) be the average number of trips with purpose p (and at 
a certain time period) made by members of households of type 
h. 

• Types are defined by the stratification chosen; for example, a 
cross-classification based on m household sizes and n car 
ownership classes will yield mn types h.

• The rate t p (h) is then the 
total number of trips in cell h, 
by purpose, divided by the 
number of households H(h) in 
it. 

t p(h) = T p(h) / H(h)

• There are various ways of defining 
household categories. The first 
application in the UK employed 108 
categories as follows: six income 
levels, three car ownership levels 
(0, 1, and 2 or more cars per 
household) and six household 
structure groupings



Cross-classification (category 
analysis)

• Trip production: 

– p = trip purpose

– i = zone

– h = household type grouping

– ai (h) = number of households of type h in zone i

– tp (h) = trip rate for trip of type p for households 
of type h
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Cross-classification (category 
analysis): Example

Situation:  Zone 23 characteristics are as follows:

Home based work (HBW) trip production data are as follows:

Households Income level 
Household size <10,000 10,000 to 30,000 >30,000 

1 10 100 50 
2 10 200 50 

3+ 30 100 50 
 

HBW trip rate Income level 
Household size <10,000 10,000 to 30,000 >30,000 

1 1.5 2.5 2.5 
2 2.5 4 5 

3+ 3 5 7 
 



Cross-classification (category 
analysis): Steps to create table

• Establish household groupings
• Assign households to the groupings
• Total, for each grouping the observed trips [Tp(h)]

– p is the trip purpose
– h is the grouping

• Total, for each grouping the observed households [H(h)]
– H is the number of households observed
– h is the grouping

• Calculate the trip rates by grouping [tp(h) = Tp(h)/ H(h)]

Cross-classification (category 
analysis)

• Advantages of cross-classification
– Independent of zone system

– No regression related assumptions necessary 

• Disadvantages
– No extrapolation

– No trip rate for cells with no observations

– Difficult to add additional stratifying variables

– Difficult to choose household groups



Matching Production and 
Attractions

• trip production models are more reliable 
than trip attraction

• RESULT: force total trip attractions to 
equal total trip productions

• Pi = trips produced by zone i

• Ai = total trips attracted by zone i

Matching Generations and 
Attractions (cont.)

• The adjusting factor to adjust the 
attractions 
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Trip Attraction Adjustment Example

1

2

3

4

5

6

Zone HBW 
Productions 

HBW 
Attractions 

Adjusted HBW 
Attractions 

1 200 300  
2 100 100  
3 300 300  
4 400 200  
5 200 500  
6 100 400  
Total 1,300 1,800  
 

Trip Generation Modeling—
Regression



Regression Analysis

• The method will not discuss in this class, since other course 
has discussed it

• Try an example by using data analysis in ms excel

1. Determining the coefficient of variables

2. Check t test value

3. Check multicollinearity

4. Check R2

Zonal-based Multiple Regression
• In this case an attempt is made to find a linear relationship between the 

number of trips produced or attracted by zone and average 
socioeconomic characteristics of the households in each zone. The 
following are some interesting considerations:

1. Zonal models can only explain the variation in trip making 
behavior between zones. For this reason they can only be successful 
if the inter-zonal variations adequately reflect the real reasons behind 
trip variability. For this to happen it would be necessary that zones not 
only had a homogeneous socioeconomic composition, but represented 
as wide as possible a range of conditions

2. Role of the intercept. One would expect the estimated regression line 
to pass through the origin; however, large intercept values (i.e. in 
comparison to the product of the average value of any variable and its 
coefficient) have often been obtained. If this happens the equation 
may be rejected; if on the contrary, the intercept is not significantly 
different from zero, it might be informative to re-estimate the line, 
forcing it to pass through the origin.



3. Null zones. It is possible that certain zones do not offer 
information about certain dependent variables (e.g. there can 
be no HB trips generated in non-residential zones). Null zones 
must be excluded from analysis; 

4. Zonal totals versus zonal means. When formulating the 
model the analyst appears to have a choice between using 
aggregate or total variables, such as trips per zone and cars 
per zone, or rates such as trips per household per zone and 
cars per household per zone. In the first case the regression 
model would be:

Yi = θ0 + θ1X1i + θ2X2i + . . . + θk Xki + Ei

whereas the model using rates would be:

yi = θ0 + θ1x1i + θ2x2i + . . . + θk xki + ei

with yi = Yi/Hi; xi = Xi/Hi; ei = Ei/Hi and Hi the number of 
households in zone i.

• To end this theme it is important to remark that even when 
rates are used, zonal based regression is conditioned by 
the nature and size of zones



Household-based Regression
• Intra-zonal variation may be reduced by decreasing zone size, 

especially if zones are homogeneous. However, smaller zones 
imply a greater number of them and this has two 
consequences:

1. more expensive models in terms of data collection, 
calibration and operation;

2. larger sampling errors, which are assumed non-existent by 
the multiple linear regression model.

• Proceed stepwise, testing each potential explanatory variable 
in turn until the best model (in terms of some summary 
statistics for a given confidence level) is obtained. 

• In actual fact, stepwise methods are not recommended; it is 
preferable to proceed the other way around, i.e. test a model 
with all the variables available and take out those which are 
not essential (on theoretical or policy grounds) and have low 
significance or an incorrect sign.

Example

• Consider the variables trips per household (Y), number 
of workers (X1) and number of cars (X2). 

• Table 4.3 presents the results of successive steps of a 
stepwise model estimation; the last row also shows (in 
parenthesis) values for the t-ratio 



• The third model is a reasonable equation in spite of its low 
R2. The intercept 0.91 is not large (compare it with 1.44 times 
the number of workers, for example) and the regression 
coefficients are significantly different from zero.

• An indication of how good these models are may be obtained 
from comparing observed and modelled trips for some 
groupings of the data (see Table 4.4). 

• As can be seen, the 
majority of cells show a 
reasonable approximation 
(i.e. errors of less than 
30%). If large bias were 
spotted it would be 
necessary to adjust the 
model parameters; 
however, this is not easy as 
there are no clear-cut rules 
to do it, and it depends 
heavily on context

The Problem of Non-Linearity

• the linear regression model assumes that each independent 
variable exerts a linear influence on the dependent variable.

• It is not easy to detect non-linearity because apparently linear 
relations may turn out to be non-linear when the presence of 
other variables is allowed for in the model.

• Multivariate graphs are useful in 
this sense; the example of 
Figure 4.9 presents data for 
households stratified by car 
ownership and number of 
workers. 

• It can be seen that travel 
behavior is non-linear with 
respect to family size.



• There are two methods to incorporate non-linear variables into 
the model:

1. Transform the variables in order to linearize their effect (e.g. 
take logarithms, raise to a power). However, selecting the 
most adequate transformation is not an easy or arbitrary 
exercise, 

2. Use dummy variables. In this case the independent variable 
under consideration is divided into several discrete intervals 
and each of them is treated separately in the model. In this 
form it is not necessary to assume that the variable has a 
linear effect, because each of its portions is considered 
separately in terms of its effect on travel behavior. 

For example, if car ownership was treated in this way, 
appropriate intervals could be 0, 1 and 2 or more cars per 
household. As each sampled household can only belong to 
one of the intervals, the corresponding dummy variable 
takes a value of 1 in that class and 0 in the others. It is easy 
to see that only (n − 1) dummy variables are needed to 
represent n intervals.

Example 4.4

Consider the model of Example 4.3 and assume that variable X2

is replaced by the following dummies:

• Z1, which takes the value 1 for households with one car and 
0 in other cases;

• Z2, which takes the value 1 for households with two or more 
cars and 0 in other cases.

Non-car-owning households correspond to 
the case where both Z1 and Z2 are 0.
The model of the third step in Table 4.3 
would now be:

Y = 0.84 + 1.41X1 + 0.75Z1 + 3.14Z2

(3.6) (8.1) (3.2) (3.5)

R2 = 0.387



Obtaining Zonal Totals
• In the case of zonal-based regression models, this is not a problem 

as the model is estimated precisely at this level. 
• In the case of household-based models, though, an aggregation 

stage is required. 
• However, it must be noted that the aggregation stage can be a very 

complex matter in non-linear models, as we will see in Chapter 9.
• Thus, for the third model of Table 4.3 we would have:

Ti = Hi (0.91 + 1.44X1i + 1.07X2i )

• where Ti is the total number of HB trips in zone i, Hi is the total 
number of households in it and Xji is the average value of variable Xj

for the zone.
• On the other hand, when dummy variables are used, it is also 

necessary to know the number of households in each class for each 
zone; for instance, in the model of Example 4.4 we would require:

Ti = Hi (0.84 + 1.41X1i ) + 0.75H1i + 3.14H2i

where Hji is the number of households of class j in zone i.

Bayesian Updating of Trip 
Generation Parameters

• Assume we want to estimate a trip generation model but lack 
funds to collect appropriate survey data; a possible (but 
inadequate) solution is to use a model estimated for another 
(hopefully similar) area directly. 

• However, it would be highly desirable to modify it in order to 
reflect local conditions more accurately.

• This can be done by means of Bayesian techniques for updating 
the original model parameters using information from a small 
sample in the application context. 

• Bayesian updating considers a prior distribution (i.e. that of the 
original parameters to be updated), new information (i.e. to be 
obtained from the small sample) and a posterior distribution 
corresponding to the updated model parameters for the new 
context. 

• Updating techniques are very important in a continuous planning 
framework



Example
• The mean trip rate, its 

variance and the number of 
observations for two 
household categories, 
obtained in a study 
undertaken 10 years ago 
are shown below:

• It is felt that these values 
might be slightly out of date 
for direct use today, but 
there are not enough funds 
to embark on a full-scale 
survey. A small stratified 
sample is finally taken, 
which yields the values 
shown below:


