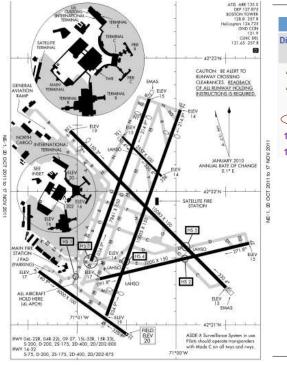
MANAJEMEN KAPASITAS RUNWAY

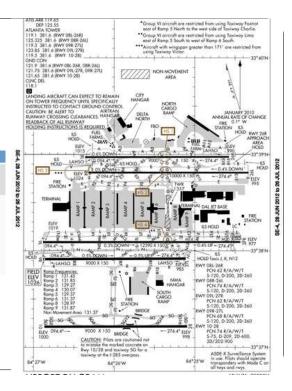
Dr.Eng. Muhammad Zudhy Irawan, S.T., M.T.


MSTT-UGM

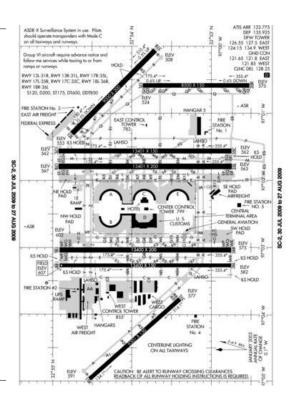
FAKTOR PENGARUH KAPASITAS RUNWAY

- Beberapa faktor pengaruh antara lain:
 - 1. Jumlah runway
 - 2. Pemisahan pesawat yang landing dan take off
 - 3. Komposisi jenis pesawat
 - 4. Pandangan dan *ceiling* (ketinggian awan terendah yang dikateogrikan dalam awan yang merusak (berawan) dan awan mendung)
 - 5. Arah Angin
 - 6. Tipe dan lokasi runway exit
- Beberapa faktor penting akan dibahas lebih detail.

1. Jumlah Runway


- Semakin banyak jumlah runway, maka kapasitas semakin tinggi
- Namun, menambah runway di suatu bandara sangatlah sulit dan bahkan tidak mungkin
- Jumlah runway yang dimaksud adalah runway efektif yang bisa digunakan, karena tidak semua bandara mempunyai runway yang kesemuanya dapat digunakan pada suatu periode tertentu.
- Contoh:
 - Di Boston airport dan Amsterdam airport, terdapat 6 runway, namun hanya dapat digunakan secara bersamaan pada saat jam sibuk maksimal 3 runway.

Direction Length m Surface 4L/22R 7,861 2,396 Asphalt 4R/22L 10,005 3,050 Asphalt 9/27 7,000 2,134 Asphalt 14/32 5,000 1,524 Asphalt 15L/33R 2,557 779 Asphalt 15R/33L 10,083 3,073 Asphalt 14 untuk take off 32 untuk landing
4L/22R 7,861 2,396 Asphalt 4R/22L 10,005 3,050 Asphalt 9/27 7,000 2,134 Asphalt 14/32 5,000 1,524 Asphalt 15L/33R 2,557 779 Asphalt 15R/33L 10,983 3,073 Asphalt
4R/22L 10,005 3,050 Asphalt 9/27 7,000 2,134 Asphalt 14/32 5,000 1,524 Asphalt 15L/33R 2,557 779 Asphalt 15R/33L 10,083 3,073 Asphalt 14 untuk take off
9/27 7,000 2,134 Asphalt 14/32 5,000 1,524 Asphalt 15L/33R 2,557 779 Asphalt 15R/33L 10,883 3,073 Asphalt
14/32 5,000 1,524 Asphalt 15L/33R 2,557 779 Asphalt 15R/33L 10,083 3,073 Asphalt
15L/33R 2,557 779 Asphalt 15R/33L 10,083 3,073 Asphalt 14 untuk <i>take off</i>
15R/33L 10,883 3,073 Asphalt 14 untuk <i>take off</i>
14 untuk take off
32 untuk landing

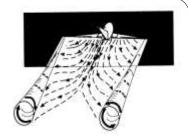

 Di Atlanta airport, memiliki 5 runway dan semua bisa digunakan pada saat jam sibuk

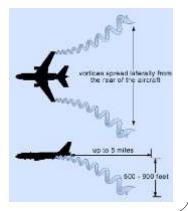
Runways						
Direction	Length		Surface			
	ft	m				
8L/26R	9,000	2,743	Concrete			
8R/26L	10,000	3,048	Concrete			
9L/27R	12,390	3,776	Concrete			
9R/27L	9,001	2,743	Concrete			
10/28	9,000	2,743	Concrete			

 Di Dallas airport, memiliki 7 runway, bisa digunakan 6 atau bahkan 7 runway saat jam sibuk

Runways							
Direction	Len	igth	Surface				
	ft	m					
13L/31R	9,000	2,743	Concrete				
13R/31L	9,301	2,835	Concrete				
17C/35C	13,401	4,085	Concrete				
17L/35R	8,500	2,591	Concrete				
17R/35L	13,401	4,085	Concrete				
18L/36R	13,400	4,084	Concrete				
18R/36L	13,400	4,084	Concrete				

- Untuk bandara yang memiliki jumlah runway banyak, manajemen kapasitas dapat dilakukan dengan melakukan konfigurasi runway, yaitu mengatur banyaknya pesawat yang take off dan landing pada setiap runway.
- Di Boston, dengan 6 runway dapat dilakukan 40 jenis konfigurasi




2. Pemisahan Pesawat yang Datang dan Pergi

- Manajemen ini dilakukan dengan mengatur pesawat mana yang take off atau landing terlebih dahulu.
- Kombinasi bisa dilakukan dengan:
 - 1. Landing (arrival) diikuti dengan landing (arrival)
 - 2. Landing (arrival) diikuti dengan take off (departure)
 - 3. Take off (departure) diikuti dengan take off (departure)
 - 4. Take off (departure) diikuti dengan landing (arrival)

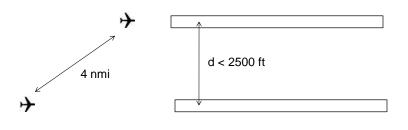
- Untuk menjaga keselamatan penerbangan, terdapat 2 syarat yang harus dipenuhi:
 - A. Kelas pesawat, yang didasarkan pada MTOW (*Maximum certified takeoff weight*):
 - Berat (H: *Heavy*), jika MTOW > 255.000 lb (pound) atau 115.666
 kg
 - 2. Besar (L: Large), antara 41.000 lb (atau 18.597 kg) 225.000 lb
 - 3. Kecil (S: Small), < 41.000 lb
 - 4. Boeing 757, antara L dengan H
 - B. Jarak/waktu antara pesawat

- Kedua syarat tersebut diberlakukan untuk menghindari wake turbulence (wake fortices) pada pesawat yang di belakang
- Semakin besar MTOW pada pesawat, maka wake turbulence yang dihasilkannya akan semakin besar, dan kemampuan menerima wake turbulence pesawat yang didepannya semakin besar pula

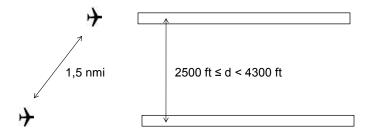
- 1. Kedatangan diikuti Kedatangan
 - A. Dengan metode jarak minimal

		Pesawat yang belakang			
		Н	L + B757	S	
	Н	> 4	> 5	> 5 atau 6*	
Pesawat	B757	> 4	> 4	> 5	
yang Depan	L	> 2,5 atau 3	> 2,5 atau 3	> 3 atau 4*	
	S	> 2,5 atau 3	> 2,5 atau 3	> 2,5 atau 3	

- Satuan dalam nmi (nautical miles), 1 nmi = 1, 85 km
- Jarak diukur dari pesawat yang depan berada di semua titik dalam final approach
- * = jarak diukur dari pesawat yang depan berada di titik awal runway


- B. Pesawat belakang bisa mendarat jika pesawat yang depan minimal sudah masuk ke *taxi way*
- Kedatangan diikuti Keberangkatan
 Jika pesawat yang baru saja mendarat minimal sudah masuk ke taxiway
- Keberangkatan diikuti Keberangkatan
 Dengan menggunakan waktu minimum (dalam detik) sebagai berikut

		Pesawat yang belakang			
		Н	L + B757	S	
	Н	> 90	> 120	> 120	
Pesawat	B757	> 90	> 90	> 120	
yang Depan	L	> 60	> 60	> 60	
2 0 0 0 1 1	S	> 45	> 45	> 45	


4. Keberangkatan diikuti Kedatangan

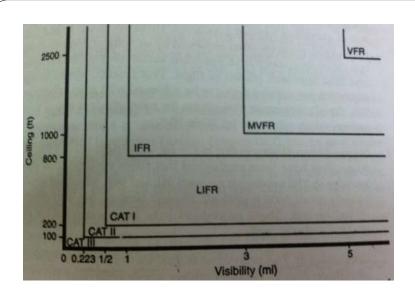
Pesawat yang akan *landing* minimal berjarak 2 nmi dari runway di saat pesawat yang akan berangkat sudah melakukan *take off*Pesawat yang datang baru boleh menyentuh *runway* jika pesawat yang *take off* sudah meninggalkan runway

- Untuk kasus kedatangan diikuti dengan kedatangan, syarat tersebut juga berlaku meskipun terdapat 2 *runway* pada suatu bandara dimana jarak antar *runway* nya < 2500 ft atau 765 m
- Contoh: Pesawat tipe H yang akan landing diikuti oleh pesawat tipe
 H yang juga akan landing

 Jika jarak antar *runway* nya antara 2500 ft – 4300 ft (1310 m), maka dapat digunakan jarak 1,5 nmi

 Jika jarak antar runway nya > 4300 ft (1310 m), maka kedua pesawat dapat landing atau take off bersamaan. Untuk lebih jelasnya, dapat digunakan tabel berikut.

	Datang -	Berangkat –	Datang –	Berangkat -
	Datang	Berangkat	Berangkat	Datang
< 2500 ft	Seperti	Seperti	Sudah di	Sudah
	runway	<i>runway</i>	titik awal	meninggal-
	tunggal	tunggal	<i>runway</i>	kan <i>runway</i>
2500 – 4300 ft	1,5 nmi	Bersamaan	Bersamaan	Bersamaan
≥ 4300 ft	Bersamaan	Bersamaan	Bersamaan	Bersamaan


 Untuk mengefisiensinya, beberapa bandara membuat offset pada salah satu runway

- Setiap 500 ft (150 m) offset, maka jarak centerline (d) antar runway dapat berkurang 100 ft (30 m)
- Sehingga, jika ditentukan offset 1000 ft, maka standar d antara 2500 ft 4300 ft dapat digunakan dengan hanya membuat jarak antar runway nya 2300 ft

3. Pandangan dan Ceiling

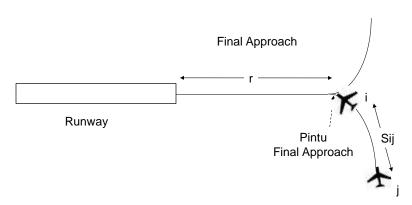
- Kapasitas runway sangat dipengaruhi oleh cuaca
- Pandangan (visibility) dan ceiling (ketinggian awan terendah yang dikategorikan dalam awan yang merusak (berawan) dan awan mendung) adalah 2 faktor penting untuk menentukan kondisi cuaca
- Oleh karenanya, perlu ditentukan pada saat kondisi (visibility dan ceiling) seperti apa pesawat diperbolehkan mendarat? dan dengan menggunakan bantuan seperti apa?

- MVFR = Marginal VFR (Visual Flight Rules)
- LIFR = Low IFR, meliputi CAT 1, 2, 3 = Kategori 1, 2, 3

ILS	Decision Height	Visibility atau RVR (Runway Visual Visibility)
CAT 1	60 m (200 ft)	Vis = 800 m (0,5 m) atau RVR = 550 m (1800 ft)
CAT II	30 m (100 ft)	RVR = 350 m (1200 ft)
CAT III – A	0 m	RVR = 200 m (700 ft)
CAT III – B	0 m	RVR = 50 m (150 ft)
CAT III – C	0 m	RVR = 0 m

- Contoh: Boston Airport
- Saat cuaca buruk (low ceiling dan low visibility) tidak bisa menggunakan runway 4R karena ketidaktersediaan ILS di runway tersebut
- Saat cuaca baik (kondisi VFR dan MVFR) runway 4L dan 4R dapat digunakan bersamaan meskipun jaraknya hanya 1600 ft (pesawat nonjet di 4L, pesawat jet di 4R)

4. Arah Angin


- Runway hanya dapat digunakan jika:
 - Crosswind (angin yang tegak lurus dengan arah pesawat) dibawah batas yang telah ditentukan
 - Tailwind (angin yang searah dengan arah pesawat) < 5 9 knots (9
 11 km/j)
- Sehingga dapat disimpulkan bahwa penggunaan runway sangat tergantung pada arah dan kekuatan angin.
- Jika arah angin dari utara, maka pesawat akan landing/take off dari arah yang berlawanan

Contoh: Boston Airport

- Jika angin bergerak dari utara ke selatan, Boston airport mengoperasikan runway 04L dan 04R yang beroperasi/takeoff ke arah utara, dan begitu pula sebaliknya
- Jika angin bergerak dari utara sangat tinggi, maka runway yang dapat digunakan hanya 33R, dan hanya untuk pesawat non jet.
- Keadaan ini seringkali menyebabkan delay yang sangat tinggi, bahkan melebihi 2 jam

MODEL MENGHITUNG KAPASITAS RUNWAY TUNGGAL

- r = panjang final approach
- Sij = jarak minimum yang diperbolehkan antara 2 pesawat: pesawat i dan pesawat j)

- Waktu interval minimum (Tij) dihitung dengan:
 - 1. Jika v_i (kecepatan pesawat depan) > v_i

$$T_{ij} = \max \left[\frac{r + s_{ij}}{v_j} - \frac{r}{v_i}, o_i \right] \text{ jika } v_i > v_j$$

2. Jika v_i (kecepatan pesawat belakang) ≥ v_i

$$T_{ij} = \max \left[\frac{s_{ij}}{v_j}, o_i \right]$$
 jika $v_i \le v_j$

Dimana o_i adalah: waktu pesawat di *runway* (mulai dari mendarat sampai meninggalkan *runway* menuju *taxiway*)

Jarak antar pesawat untuk landing (E) dihitung dengan:

$$E[T_{ij}] = \sum_{i=1}^{K} \sum_{j=1}^{K} p_{ij} \times T_{ij}$$

Dimana p_{ij} adalah probalitas *landing/takeoff* pesawat-i diikuti oleh pesawat-j

Kapasitas runway (μ) dihitung dengan:

$$\mu = \frac{1}{E[T_{ii}]}$$

Contoh Soal (Hanya untuk kasus landing)

- Di Bandara Adisucipto, terdapat 4 jenis pesawat yang landing: Tipe H, L, S1, dan S2.
- Proporsi jumlah tipe pesawat yang akan landing adalah: H = 4; L = S1
 = 7; S2 = 2
- Kecepatan masing-masing tipe pesawat yang akan landing adalah: H
 150 knot; L = 130 knot; S1 = 110 knot; S2 = 90 knot, dimana 1 knot
 1 nmi/j = 1,15 mil/jam = 1,852 km/j
- Waktu yang dibutuhkan di runway (mulai dari touch down sampai masuk taxiway) untuk masing-masing tipe pesawat yang akan landing adalah: H = 70 detik; L = 60 detik; S1 = 55 detik; S2 = 50 detik
- Panjang final approach adalah 5 nmi

 Jarak antara pesawat (sebagaimana yang sudah dijelaskan sebelumnya) adalah:

		Pesav	vat yaı	ng belakang
		Н	L	S1 dan S2
_	Н	4	5	6*
Pesawat yang Depan	L	2,5	2,5	4*
yang Depan	S1 dan S2	2,5	2,5	2,5

- * = jarak diukur dari pesawat yang depan berada di titik awal *runway*
- Pertanyaan: Hitunglah Kapasitas Maksimum Runway

Jawab

• I_{ij} =

		Pesawat yang belakang			
		Н	L	S1	S2
	Н	96	?	?	?
Pesawat yang	L	?	?	?	?
Pesawat yang Depan	S1	?	?	?	?
	S2	?	?	?	?

$$T_{H-H} = \max\left[\frac{s_{H-H}}{v_H}, o_H\right] = \max\left[\frac{4 \times 3600}{150}, 70\right] = 96$$

$$P_H = 4/20 = 0.2$$

$$P_L = P_{S1} = 7/20 = 0,35$$

$$P_{S2} = 2/20 = 0,1$$

		Pesawat yang belakang			
		Н	L	S1	S2
	Н	0,04	?	?	?
Pesawat yang	L	?	?	?	?
Depan	S1	?	?	?	?
	S2	?	?	?	?

$$P_{H-H} = P_H \times P_H = 0, 2 \times 0, 2 = 0, 04$$

$$E[T_{ij}] = \sum_{i=1}^{K} \sum_{j=1}^{K} p_{ij} \times T_{ij} = (0,04 \times 96) + \dots = 103 \text{ detik}$$

 Artinya, jarak antar pesawat untuk landing adalah 103 detik, sehingga kapasitas maksimum runway per-jamnya adalah = 3600/103 = 35 pesawat/jam

- Namun demikian, sangat sulit bagi pilot atau pemandu pesawat-j untuk menjaga dalam jarak Tij.
- Untuk keamanan, sering pilot atau pemandu pesawat menjaga jarak dalam Tij + b
- Sebagai contoh: di US, IMC (Instrument Meteorological Condition) nya menentukan untuk melebihkan nilai Tij sebesar 10 – 25 detik

Latihan (Tugas di Rumah)

Pada kasus yang sama dengan sebelumnya. berapa kapasitas runway jika:

- 1. Untuk alasan faktor keamanan, ditentukan nilai b = 10 detik?
- 2. Kondisi *airport* tidak begitu sibuk, sehingga ditentukan nilai s_{ij} adalah 3 nmi untuk L-H, L-L, S-H, S-L, S-S
- Kondisi airport sangat sibuk, sehingga pesawat dipaksa untuk meningkatkan kecepatannya sebesar 130 knot untuk pesawat tipe S1 dan 110 knot untuk pesawat tipe S2.
- Dibuat akses yang memudahkan pesawat meninggalkan *runway* menuju *taxiway*, sehingga terjadi dengan pengurangan sebesar 10 detik untuk semua jenis pesawat.

Hitung juga, berapa persen penurunan/peningkatan kapasitas runway nya